"Trivializing" Generalizations of some Izergin-Korepin-type Determinants
نویسندگان
چکیده
We generalize (and hence trivialize and routinize) numerous explicit evaluations of determinants and pfaffians due to Kuperberg, as well as a determinant of Tsuchiya. The level of generality of our statements render their proofs easy and routine, by using Dodgson Condensation and/or Krattenthaler’s factor exhaustion method. All our matrices will be assumed to be embedded inside an infinite matrix. The first theorem adds parameters to the determinant formulas found in Kuperberg [Ku] (Theorem 15), as well as older determinants, mentioned there, due to Cauchy, Stembridge, Laksov-Lascoux-Thorup, and Tsuchiya [T]. This way, the formulation is suited to the method of [AZ]. Our proofs are much more succinct and automatable, since their generality enables an easy induction using Dodgson’s rule [D, AZ], or by employing Krattenthaler’s elegant factor exhaustion method [Kr1]. Relevant background for this paper can found in [Ku], and references thereof. Theorem 1: det ( 1 xi + yj +Axiyj )1,n i,j = ∑ ii γ(p j−i, yj−i)2γ(qpj−i, xyj−i)γ(xpj−i, qyj−i) ∏ i,j γ(pn+j−i, yn+j−i) . det ( τ(qj−i, xj−i) τ(pj−i, yj−i) )1,n i,j = ∏ 2|j−i>0 γ(p j−i, yj−i)2 ∏ 2-j−i>0 γ(qp j−i, xyj−i)γ(xpj−i, qyj−i) (qx)bn/4c ∏ j>i τ(pj−i, yj−i)2 . det(Z1) 1,n i,j = δe,n γ(q, x)(py) (qx)bn/4c ∏ 2|j−i>0 γ(p j−i, yj−i)2γ(qpj−i, xyj−i)γ(xpj−i, qyj−i) ∏ j>i τ(pj−i, yj−i)2 . det(Z2) 1,n i,j = γ(q, x) (qx)b(n−1)/4c ∏ 2|j−i>0 γ(p j−i, yj−i)2γ(qpj−i, xyj−i)γ(xpj−i, qyj−i) τ(pn, yn)1−δe,n ∏ j>i τ(pj−i, yj−i)2 . det(Z3) 1,n i,j = (−py)γ(q, x) (qx)b(n+1)/4c ∏ 2|j−i>0 γ(p j−i, yj−i)2γ(qpj−i, xyj−i)γ(xpj−i, qyj−i) τ(pn, yn)1−δe,n ∏ j>i τ(pj−i, yj−i)2 . “TRIVIALIZING” GENERALIZATIONS OF SOME IZERGIN-KOREPIN-TYPE DETERMINANTS 3 det(Z4) 1,n i,j = 2 n−1 q na + (−1)x (qx)n(n−1)(n+1−3a)/6 ∏ j 6=i γ(q |j−i|, x|j−i|) ∏ i,j τ(qa+j−i, xa+j−i) . det(Z5) 1,n i,j = (−1)( n 2)2n−1 q + x (qx)n(n−1)(n+1−3b)/6 ∏ j 6=i γ(q |j−i|, x|j−i|) ∏ i,j γ(qb+j−i, xb+j−i) . Pf =det ( λi,j γ(qj−i, xj−i)γ(rj−i, zj−i) γ(pj−i, yj−i) )1,2n i,j = (yp) (qxrz)n ∏1,n j 6=i γ(p |j−i|, y|j−i|)2 ∏1,n i,j γ(pn+j−i, yn+j−i)2 × 1,n∏i,jγ(qp|j−i|, xy|j−i|)γ(xp|j−i|, qy|j−i|)γ(rp|j−i|, zy|j−i|)γ(zp|j−i|, ry|j−i|).Sketch of Proof: Identities Z4 and Z5 are directly amenable to Dodgson‘s Condensation technique[AZ]. For the remaining assertions, use the factor exhaustion method [Kr1] (see also [Ku]): the essentialidea is to compare zeros and poles on both sides of the equation at hand. We leave the straightforwarddetails to the reader.Acknowledgment: The authors wish to thank Christian Krattenthaler for helpful suggestions. References[AZ] T. Amdeberhan, D. Zeilberger, Determinants Through the Looking Glass, Adv. Appl. Math. (Foata special issue)2/3 27 (2001), 225-230.[D] C.L. Dodgson, Condensation of Determinants, Proceedings of the Royal Society of London 15 (1866), 150-155.[Kr1] C. Krattenthaler, Advanced determinant calculus, Sèminaire Lotharingien Combin. (B42q) 42 (1999).[Kr2] C. Krattenthaler, Advanced determinant calculus: A Complement, Linear Alg. Appl. 411 (2005), 68-166.[Ku] G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, Ann. of Math. (2) 156 (2002),835-866.[T] O. Tsuchiya, Determinant formula for the six-vertex model with reflecting end, J. Math. Phys. 39 (1998), 5946-5951.
منابع مشابه
An Izergin–korepin-type Identity for the 8vsos Model, with Applications to Alternating Sign Matrices
We obtain a new expression for the partition function of the 8VSOS model with domain wall boundary conditions, which we consider to be the natural extension of the Izergin– Korepin formula for the six-vertex model. As applications, we find dynamical (in the sense of the dynamical Yang–Baxter equation) generalizations of the enumeration and 2-enumeration of alternating sign matrices. The dynamic...
متن کاملLink invariant of the Izergin–Korepin model
The link invariant associated with the Izergin–Korepin 19-vertex model is deduced using the method of statistical mechanics. It is shown that the Izergin–Korepin model leads to an invariant which is precisely the 3-state Akutsu–Wadati polynomial, previously known only for 2and 3-braid knots. We give a table of the invariant for all knots and links up to seven crossings.
متن کاملDFF 158/03/91 Correlators in the Heisenberg XX0 Chain as Fredholm Determinants
The two-point time and temperature dependent correlation functions for the XX0 one-dimensional model in constant magnetic field are represented (in the thermodynamical limit) as Fredholm determinants of linear integral operators.
متن کاملNonstandard coproducts and the Izergin-Korepin open spin chain
Corresponding to the Izergin-Korepin (A (2) 2 ) R matrix, there are three diagonal solutions (“K matrices”) of the boundary Yang-Baxter equation. Using these R and K matrices, one can construct transfer matrices for open integrable quantum spin chains. The transfer matrix corresponding to the identity matrix K = I is known to have Uq(o(3)) symmetry. We argue here that the transfer matrices corr...
متن کاملThe Malgrange Form and Fredholm Determinants
We consider the factorization problem of matrix symbols relative to a closed contour, i.e., a Riemann–Hilbert problem, where the symbol depends analytically on parameters. We show how to define a function τ which is locally analytic on the space of deformations and that is expressed as a Fredholm determinant of an operator of “integrable” type in the sense of Its–Izergin–Korepin–Slavnov. The co...
متن کاملRazumov–Stroganov sum rule: a proof based on multi-parameter generalizations
We prove that the sum of entries of the suitably normalized groundstate vector of the O(1) loop model with periodic boundary conditions on a periodic strip of size 2n is equal to the total number of n× n alternating sign matrices. This is done by identifying the state sum of a multi-parameter inhomogeneous version of the O(1) model with the partition function of the inhomogeneous six-vertex mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics & Theoretical Computer Science
دوره 9 شماره
صفحات -
تاریخ انتشار 2007